191. Number of 1 Bits
Easy
Write a function that takes an unsigned integer and returns the number of '1' bits it has (also known as the Hamming weight).
Note:
- Note that in some languages, such as Java, there is no unsigned integer type. In this case, the input will be given as a signed integer type. It should not affect your implementation, as the integer's internal binary representation is the same, whether it is signed or unsigned.
- In Java, the compiler represents the signed integers using 2's complement notation. Therefore, in Example 3, the input represents the signed integer. -3.
Example 1:
Input: n = 00000000000000000000000000001011
Output: 3
Explanation: The input binary string 00000000000000000000000000001011 has a total of three '1' bits.
Example 2:
Input: n = 00000000000000000000000010000000
Output: 1
Explanation: The input binary string 00000000000000000000000010000000 has a total of one '1' bit.
Example 3:
Input: n = 11111111111111111111111111111101
Output: 31
Explanation: The input binary string 11111111111111111111111111111101 has a total of thirty one '1' bits.
Constraints:
- The input must be a binary string of length 32.
Follow up: If this function is called many times, how would you optimize it?
문제 풀이
문제 접근
- 비트연산 문제인것 같다.
풀이
- n 값을 오른쪽으로 쉬프트 하면서 체크한다.
- 모든 비트 값을 확인한다.
- 더 빠른 버전은, n - 1 한 값을 and 연산을 해나간다.
- 1 을 뺐을 경우, 현재 위치에서 1 인자리가 0 으로 변한다.
0100 에서 1 을 빼면 0011 로 변하고, 이를 원래 값과 and 연산하면 0000 로 변한다. - 모든 비트 값을 비교해볼 필요가 없기 때문에 조금더 빠르지만 제출시에는 몇 ms 차이 안난다.
소스 코드
class Solution:
def hammingWeight(self, n: int) -> int:
res = 0
while n:
if n & 1:
res += 1
n = n >> 1
return res
# Faster Solution
class Solution:
def hammingWeight(self, n: int) -> int:
res = 0
while n:
res += 1
n &= (n - 1)
return res
'컴퓨터공학 > LeetCode 1000' 카테고리의 다른 글
[LeetCode] 13. Roman to Integer (0) | 2022.08.16 |
---|---|
[LeetCode] 90. Subsets II (0) | 2022.08.14 |
[LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree (0) | 2022.08.12 |
[LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree (0) | 2022.08.12 |
[LeetCode] 314. Binary Tree Vertical Order Traversal (0) | 2022.08.11 |